Interest can be calculated in two different ways: simple and compound. Last section you learned to calculate interest using the simple interest formula: \(I = P \times r \times t \). This formula calculates the interest only. The new amount \((A) \) can be determined by adding the original amount/principle \((P) \) to the interest earned \((I) \): \(A = P + I \). Simple interest is a calculation based on the original principle only. Over time, the amount of interest earned is year is the same. For example, an investment earns 4% annual interest. Each year, a $1000 investment will earn $40. After the first year the total is $1040, the second year total is $1080, and the third year is $1120.

Compound interest is the common method of calculating interest. While it is more common, it is also a more challenging computation. In compound interest, your interest earns interest. This means that each year your interest is calculated on the new total, not just the original amount.

Example A: The comparison of an investment of $1000 at 4% annual interest for 5 years, showing the annual totals.

<table>
<thead>
<tr>
<th>Year</th>
<th>Simple Interest</th>
<th>Compound Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interest: 1000(0.04)(1) = $40</td>
<td>Interest: 1000(0.04)(1) = $40</td>
</tr>
<tr>
<td></td>
<td>Total: 1000 + 40 = $1040</td>
<td>Total: 1000 + 40 = $1040</td>
</tr>
<tr>
<td>2</td>
<td>Interest: 1000(0.04)(2) = $80</td>
<td>Interest: 1040(0.04)(1) = $41.60</td>
</tr>
<tr>
<td></td>
<td>Total: 1000 + 80 = $1080</td>
<td>Total: 1040 + 41.60 = $1081.60</td>
</tr>
<tr>
<td>3</td>
<td>Interest: 1000(0.04)(3) = $120</td>
<td>Interest: 1081.60(0.04)(1) = $43.26</td>
</tr>
<tr>
<td></td>
<td>Total: 1000 + 120 = $1120</td>
<td>Total: 1081.60 + 43.26 = $1124.86</td>
</tr>
<tr>
<td>4</td>
<td>Interest: 1000(0.04)(4) = $160</td>
<td>Interest: 1124.86(0.04)(1) = $44.99</td>
</tr>
<tr>
<td></td>
<td>Total: 1000 + 160 = $1160</td>
<td>Total: 1124.86 + 44.99 = $1169.85</td>
</tr>
<tr>
<td>5</td>
<td>Interest: 1000(0.04)(5) = $200</td>
<td>Interest: 1169.85(0.04)(1) = $46.79</td>
</tr>
<tr>
<td></td>
<td>Total: 1000 + 200 = $1200</td>
<td>Total: 1169.85 + 46.79 = $1216.64</td>
</tr>
</tbody>
</table>

According to the example, simple interest is always based on the original amount/principle. Therefore the interest earned each year is constant: $40. However, in compound interest, the interest is calculated on the new total amount of money each year. After the first year, both simple and compound interest are the same: $1040. However in the second year, compound interest is based on the new total, $1040, whereas simple interest is still calculated on the original $1000. By the end of five year, the compound interest calculation has earned $16.64 more than the simple interest. Over time, this difference will become greater and greater.

The following is the formula for yearly compound interest.

\[A = P(1 + r)^t \]

Where \(A \) is the total new total amount of money after an initial amount \((P) \) is earning \(r \) annual percent for \(t \) years. The annual percentage rate, \(r \), is in decimal form.

Example B: $5000 is deposited into a savings account earning 2.86%. How much is the savings account worth if left untouched for 4 years, if the interest is compounded yearly?

Use the yearly compound interest formula: \(A = P(1 + r)^t \).

\[P = 5000, \ r = 0.0286, \ \text{and} \ t = 4. \]

After substitution:

\[A = 5000(1 + 0.0286)^4 \]

Follow the order of operations

\[A = 5000(1.0286)^4 \]

Do not round

\[A = 5000(1.119402004) \]

Do not round

\[A = 5597.010018 \]

Rounding to the nearest cent

\[A = 5597.01 \]

The savings account is worth $5597.01 after 4 years.

A calculator must be used to answer compound interest questions. To calculate \((1.0286)^4\), either use a calculator to multiply: \((1.0286)(1.0286)(1.0286)(1.0286)\), or use the exponent button on your calculator. The exponent button looks like: \(\text{YX} \) or \(\square\).

To input \((1.0286)^4\) do the following: 1.0286 \(\text{YX} \) 4 or 1.0286 \(\square \) 4.

Example C: What is the interest earned after 2 years if $2500 is deposited into a certificate of deposit earning 3.4% annual interest?

\[A = 2500(1 + 0.034)^2 \]

calculator sequence: 2500 \(\times\) 1.034 \(\square \) 2 \text{ ENTER} \]

\[A = 2672.89 \]

The balance after 2 years is $2672.89.

Interest earned is total amount, \(A \), less the principle, \(P \) \((I = A - P)\).

This means that $172.89 has been earned in interest. \((I = 2672.89 - 2500)\)
You may do all work on this page. Use a calculator, showing steps.

Determine the **balance** \((A)\) and the amount of **interest** \((I)\) earned for the following questions, when:

a. the account is earning simple interest \((I = Prt, A = P + I)\)
b. the account is earning yearly compounded interest \((A = P(1 + r)^t, I = A - P)\)

1. $3000 is invested at 3% annual interest for 3 years.
 - a. Simple Interest
 - b. Compound Interest

2. $1234 is invested at 5.6% annual interest for 7 years.
 - a. Simple Interest
 - b. Compound Interest

3. $10,000 is invested at 0.75% annual interest for 2 years.
 - a. Simple Interest
 - b. Compound Interest

4. $987.65 is invested at 0.4% annual interest for 5 years.
 - a. Simple Interest
 - b. Compound Interest

5. $500 is invested at 4.3% annual interest for 18 months.
 - a. Simple Interest
 - b. Compound Interest

6. $1000 is invested at 2.9% annual interest for 6 months.
 - a. Simple Interest
 - b. Compound Interest